Section: Microbiology

Original Research Article

EVALUATING THE ANTIMICROBIAL RESISTANCE PROFILES OF ESCHERICHIA COLI STRAINS ISOLATED FROM UTI PATIENTS IN TERTIARY CARE HOSPITAL

Hitesh Bhatt¹

¹Associate Professor, Department of Microbiology, Sudha Rustagi Dental College, Faridabad, Haryana, India

 Received
 : 06/09/2025

 Received in revised form
 : 20/10/2025

 Accepted
 : 08/11/2025

Corresponding Author:

Dr. Hitesh Bhatt,

Associate Professor, Department of Microbiology, Sudha Rustagi Dental College, Faridabad, Haryana, India. Email: hbhattmicro@gmail.com

DOI: 10.70034/ijmedph.2025.4.245

Source of Support: Nil, Conflict of Interest: None declared

Int J Med Pub Health

2025; 15 (4); 1368-1374

ABSTRACT

Background: Urinary tract infections (UTIs) are among the most common bacterial infections in India. Rational empirical therapy depends on local data on uropathogens and their antimicrobial susceptibility. The objective is to identify the distribution of bacterial pathogens causing UTIs and describe their antibiotic resistance patterns in an Indian tertiary care setting.

Materials and Methods: This cross-sectional observational study was conducted over 18 months in the Department of Microbiology after Institutional Ethics Committee approval. Midstream urine samples from clinically suspected UTI cases were cultured. Significant bacteriuria was defined as ≥10⁵ CFU/mL of a single isolate. Identification and susceptibility testing were performed by standard methods using the Kirby–Bauer disk diffusion technique and interpreted according to CLSI guidelines.

Results: Of 160 culture-positive samples, females accounted for 68.7% (n=110). The most affected age group was 13–65 years (41.2%). Escherichia coli was the predominant uropathogen 58.8% (n=94), followed by Proteus spp. 14.4% (n=23), Staphylococcus spp. 13.1% (n=21), Klebsiella spp. 5.0% (n=8), Pseudomonas spp. 5.0% (n=8), and Enterobacter spp. 3.8% (n=6). Inpatient and outpatient distributions were comparable (48.1% vs 51.9%). E. coli showed high resistance to Cefotaxime 86.9%, Cefadroxil 76.3%, and Co-trimoxazole 74.4%, but remained sensitive to Meropenem 89.4%, Imipenem 84.9%, and Amikacin 81.3%. Proteus spp. were uniformly resistant to Cefotaxime and largely sensitive to Meropenem 86.1% and Amikacin 84.7%. Staphylococcus spp. were resistant to Cefotaxime and Tobramycin, with better activity seen for Piperacillin/Tazobactam 76.9% and Amikacin 72.4%. Klebsiella and Pseudomonas spp. displayed multidrug resistance, with carbapenems retaining the best activity. Enterobacter spp. were most sensitive to Amikacin 90.0% and Imipenem 72.0%.

Conclusion: E. coli remains the leading cause of UTIs. High resistance to commonly used cephalosporins and Co-trimoxazole underscores the need for culture-guided therapy. Carbapenems and Amikacin were the most reliable agents across isolates. Ongoing local surveillance and antibiotic stewardship are essential to preserve effectiveness and improve outcomes.

Keywords: urinary tract infection, Escherichia coli, antimicrobial resistance, antibiogram, India, Kirby–Bauer, CLSI.

INTRODUCTION

Urinary tract infections (UTIs) are among the most frequent bacterial infections seen in clinical practice and continue to be a major public health problem both globally and in India. They require early diagnosis and prompt antibiotic treatment to prevent complications such as pyelonephritis and urosepsis.^[1] Among extraintestinal bacterial infections, UTIs are particularly important because they affect people of

all ages, from newborns to the elderly.^[2] Worldwide, more than 150 million people are diagnosed with UTIs each year, leading to considerable morbidity and healthcare expenditure. In developing countries like India, the actual burden is often underestimated due to limited surveillance systems, empirical use of antibiotics, and self-medication.^[3-8]

Most UTIs occur through the ascending route of infection, in which bacteria from the intestinal flora travel through the urethra to the bladder and sometimes to the kidneys. This route is more common in females because their urethra is shorter and situated closer to the perineal area, making bacterial entry easier.[9] Factors such as sexual activity, pregnancy, and childbirth further increase susceptibility.[10,11] Studies suggest that nearly 50 to 60 percent of women experience at least one episode of symptomatic UTI in their lifetime, with a higher frequency among sexually active women.[12] In comparison, men are less likely to develop community-acquired UTIs because of their longer urethra and the antibacterial properties of prostatic secretions.[12]

UTIs can involve either the lower urinary tract, known as cystitis, or both the lower and upper tracts, resulting in pyelonephritis. While cystitis is often mild and self-limiting, kidney involvement can cause tissue injury, sepsis, and long-term complications if untreated. Bacterial infections are the most common cause of UTIs, with Escherichia coli (E. coli) responsible for about 70 to 80 percent of all cases. Determine the preumoniae, Staphylococcus saprophyticus, Enterococcus faecalis, and Proteus mirabilis.

Antibiotic susceptibility patterns of these bacteria vary across countries, regions, and healthcare settings. Misuse and overuse of antibiotics have accelerated the development of antimicrobial resistance (AMR), particularly among E. coli and other Enterobacteriaceae.[15-18] In India, resistance to commonly used antibiotics such as fluoroquinolones, cephalosporins, and beta-lactams has become a growing concern. Therefore, regional surveillance of antimicrobial sensitivity is essential to guide empirical therapy and improve treatment outcomes. Understanding the local distribution of uropathogens and their resistance profiles is crucial for clinicians to choose effective antibiotics and to control the spread of resistant strains. The frequency and resistance pattern of bacterial isolates can differ widely between hospitals and communities, and even over time within the same area. The present study has been undertaken to identify the common bacterial agents responsible for urinary tract infections in an Indian population and to analyze their antibiotic resistance patterns. The findings are expected to contribute to more rational antibiotic prescribing and to highlight the need for continuous regional surveillance programs that monitor antimicrobial resistance and help improve patient care.

MATERIALS AND METHODS

Following approval from the Institutional Ethics Committee (IEC), this cross-sectional observational study was conducted in the Department of Microbiology, Medicity hospital, Faridabad, over a period of 18 months. The study included urine samples obtained from patients clinically suspected of urinary tract infection (UTI) and submitted for microbiological evaluation.

A total of 160 urine samples yielding significant bacterial growth were included in the study. The sample size was determined considering an effect size of 0.40, a confidence level of 95%, and a statistical power of 80%, ensuring adequate representation for statistical analysis. Only the first positive culture per patient was included to avoid duplication.

Inclusion Criteria

- Patients presenting with clinical features suggestive of UTI.
- Urine samples showing growth of a single bacterial species with ≥10⁵ colony-forming units (CFU/mL).

Exclusion Criteria

- Samples showing mixed bacterial growth or colony counts <10⁵ CFU/mL.
- Patients who had received antibiotic therapy prior to sample collection.
- Contaminated or improperly collected urine samples.

Methodology: A positive urine culture was defined as the presence of ≥10⁵ colony-forming units (CFU) of a single bacterial species per milliliter of urine. Midstream urine samples were collected from adult patients using sterile, designated urine collection containers after proper instructions on aseptic collection techniques.

For patients with multiple urine cultures during the study period, only the first positive culture was included to avoid duplication and bias. Samples showing polymicrobial growth (more than one organism), low colony counts (<10⁵ CFU/mL), or those collected from patients already on antibiotic therapy were excluded. All patients with positive urine cultures were considered to have urinary tract infections and were categorized according to age and gender for further analysis.

Bacterial Identification and Antibiotic Susceptibility Testing: Each urine sample was inoculated on MacConkey agar and digested soy agar plates using a calibrated 10 μL loop. The inoculated plates were incubated aerobically at 37°C for 24–48 hours. Bacterial isolates were subjected to Gram staining for preliminary differentiation into Gram-positive cocci (GPC) and Gram-negative rods (GNR). Species-level identification and antimicrobial susceptibility testing were carried out using the Kirby–Bauer disk diffusion technique. $^{[19]}$

Antibiotic susceptibility results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. [20] The sensitivity of UTI-

associated bacterial isolates was tested against a panel of commonly used antibiotics available in the local market, which included: Amikacin (30 Amoxicillin/Clavulanic acid (30 μg), Ampicillin/Sulbactam (10 μg/10 μg), Cefadroxil (30 μg), Cefixime (5 μg), Cefotaxime (30 μg), Cefuroxime (30 µg), Ceftriaxone (30 μg), Ciprofloxacin (10 µg), Doxycycline (30 µg), Gentamicin (10 µg), Imipenem (10 µg), Levofloxacin (15 μg), Meropenem (10 μg), Nitrofurantoin (100 μg), Norfloxacin (10 μg), Ofloxacin (10 μg), Tobramycin (10 µg), Piperacillin/Tazobactam (100 μg/10 μg), Co-trimoxazole (25 μg), and Vancomycin $(30 \mu g)$.

Statistical Analysis: Patient demographic details (age and gender), culture results, bacterial isolates, and antibiotic susceptibility profiles were recorded in a structured proforma. Patients were categorized by age group and sex to analyze distribution trends and resistance patterns.

All data were compiled using Microsoft Excel 2010 and analyzed with IBM SPSS Statistics version 25.0

(IBM Corp., USA). Descriptive statistics were used to summarize the data, with frequencies and percentages for categorical variables. Associations between bacterial isolates and antibiotic resistance were analyzed using the Chi-square test. Results were presented in tables and charts, and a p-value <0.05 was considered statistically significant.

RESULTS

A total of 160 urine samples showing significant bacterial growth were analyzed during the study period. The distribution of bacterial isolates is presented in Table 1. Among all isolates, Escherichia coli was identified as the predominant uropathogen, accounting for 58.8% (n=94) of cases. Other isolated organisms included Proteus spp. (14.4%, n=23), Staphylococcus spp. (13.1%, n=21), Klebsiella spp. (5.0%, n=8), Pseudomonas spp. (5.0%, n=8), and Enterobacter spp. (3.8%, n=6).

Table 1: Frequency and percentage of bacterial agents isolated from urine specimens in the study population

Bacterium	Frequency	Percentage (%)	
Escherichia coli	94	58.8	
Proteus spp.	23	14.4	
Staphylococcus spp.	21	13.1	
Klebsiella spp.	8	5.0	
Pseudomonas spp.	8	5.0	
Enterobacter spp.	6	3.7	
Total	160	100.0	

Gender Distribution: Out of the 160 culture-positive cases, female patients accounted for 68.7% (n=110) and male patients for 31.3% (n=50). In both genders, E. coli remained the most prevalent organism, with 43.1% in females and 15.7% in males.

In females, Proteus spp. (10.6%) and Staphylococcus spp. (8.1%) were the next most frequent pathogens, whereas in males, Staphylococcus spp. (4.7%) and Proteus spp. (4.4%) followed E. coli. Detailed gender-wise distribution is summarized in [Table 2].

Table 2: Distribution of bacterial isolates among male and female patients

Bacterium	Female (%)	Male (%)	Total (%)
Escherichia coli	43.1	15.7	58.8
Proteus spp.	10.6	4.4	14.4
Staphylococcus spp.	8.1	5.0	13.1
Klebsiella spp.	3.8	1.2	5.0
Enterobacter spp.	1.9	1.9	3.8
Pseudomonas spp.	1.3	3.7	5.0
Total (%)	68.7	31.3	100.0

Age Distribution: The majority of infections occurred among patients aged 13–65 years (41.2%), followed by 0–13 years (35.0%) and >65 years (23.8%). E. coli was the leading organism across all

age groups, most notably in the 13–65 years group (23.8%) and 0–13 years group (19.4%). Table 3 shows the age-wise distribution of isolates.

Table 3: Distribution of bacterial isolates across age groups

Bacterium	0–13 years (%)	13–65 years (%)	>65 years (%)	Total (%)
Escherichia coli	19.4	23.8	15.6	58.8
Proteus spp.	5.6	6.3	2.5	14.4
Staphylococcus spp.	3.8	7.5	1.9	13.1
Klebsiella spp.	1.9	1.9	1.2	5.0
Pseudomonas spp.	2.5	0.6	1.9	5.0
Enterobacter spp.	1.9	1.3	0.6	3.8
Total (%)	35.0	41.2	23.8	100.0

Inpatient and Outpatient Distribution: Among the study population, inpatients constituted 48.1% (n=77), while outpatients comprised 51.9% (n=83). E. coli was the most frequently isolated organism in both groups, accounting for 34.4% in inpatients and

31.3% in outpatients. Proteus spp. (5.0%) and Pseudomonas spp. (4.4%) were next most frequent in inpatients, whereas Staphylococcus spp. (9.4%) and Proteus spp. (6.3%) followed E. coli among outpatients [Table 4].

Table 4: Distribution of bacterial isolates among inpatient and outpatient groups

Bacterium	Inpatients (%)	Outpatients (%)	Total (%)
Escherichia coli	34.4	31.3	65.7
Proteus spp.	5.0	6.3	11.3
Staphylococcus spp.	2.5	9.4	11.9
Pseudomonas spp.	4.4	2.5	6.9
Klebsiella spp.	0.6	2.2	2.8
Enterobacter spp.	1.3	0.6	1.9
Total (%)	48.1	51.9	100.0

Antimicrobial Susceptibility Pattern: The antimicrobial susceptibility results of isolated uropathogens are summarized in [Table 5].

E. coli isolates showed highest resistance to Cefotaxime (86.9%), Cefadroxil (76.3%), and Cotrimoxazole (74.4%), whereas Meropenem (89.4%), Imipenem (84.9%), and Amikacin (81.3%) were the most effective antibiotics.

Proteus spp. displayed complete resistance to Cefotaxime (100%) and high resistance to Cotrimoxazole (83.3%) and Cefadroxil (80.0%), but were largely sensitive to Meropenem (86.1%), Amikacin (84.7%), and Piperacillin/Tazobactam (76.4%).

Staphylococcus spp. exhibited high resistance to Cefotaxime and Tobramycin (100%), and moderate resistance to Cefixime (84.2%) and Cefadroxil (87.5%). However, good sensitivity was observed

with Piperacillin/Tazobactam (76.9%), Amikacin (72.4%), and Imipenem (71.1%).

Klebsiella spp. were uniformly resistant to Ampicillin/Sulbactam, Cefotaxime, and Piperacillin/Tazobactam (100%) but showed partial sensitivity to Imipenem (61.0%) and Gentamicin (58.0%).

Pseudomonas spp. showed complete resistance to Amoxicillin/Clavulanic acid and Ampicillin/Sulbactam, but sensitivity to Imipenem and Cefuroxime (78.0%).

Enterobacter spp. demonstrated 100% resistance to Amoxicillin/Clavulanic acid, Ampicillin/Sulbactam, and Cefadroxil, while retaining sensitivity to Amikacin (90.0%) and Imipenem (72.0%).

Overall, carbapenems (Meropenem and Imipenem) and Amikacin emerged as the most effective antibiotics across isolates, while cephalosporins and Co-trimoxazole showed the highest resistance rates.

Table 5: Antimicrobial susceptibility profiling of isolated UTI pathogens (n = 160)

Antimicrobial	E. coli (n=94)				teus s			hyloc		Kleb	siella	spp.		ıdomo			eroba			
Agent	L			(n=23)				s spp. (n=21)			(n=8)			spp. (n=8)			spp. (n=6)			
	R (%)	I (%)	S (%)	(%)	(%)	S (%)	(%)	(%)	(%)	R (%)	I (%)	S (%)	R (%)	(%)	S (%)	R (%)	I (%)	S (%)		
Amikacin	12	7.	81	5.0	10	85	20.	6.	73	25.	25	50	44.	0.	56	0.0	8.	92		
	.0	0	.0		.0	.0	0	5	.5	0	.0	.0	0	0	.0		0	.0		
Amoxicillin/Cla	40	28	32	36.	25	39	42.	6.	52	63.	29	8.	100	0.	0.	67.	8.	25		
vulanic acid	.0	.0	.0	0	.0	.0	0	0	.0	0	.0	0	.0	0	0	0	0	.0		
Ampicillin/Sulb	74	12	14	67.	0.	33	75.	12	13	100	0.	0.	100	0.	0.	100	0.	0.		
actam	.0	.0	.0	0	0	.0	0	.0	.0	.0	0	0	.0	0	0	.0	0	0		
Cefadroxil	76	17	7.	82.	12	6.	50.	14	36	56.	44	0.	100	0.	0.	100	0.	0.		
	.0	.0	0	0	.0	0	0	.0	.0	0	.0	0	.0	0	0	.0	0	0		
Cefixime	56	8.	36	63.	13	24	89.	5.	6.	89.	0.	11	89.	0.	11	100	0.	0.		
	.0	0	.0	0	.0	.0	0	0	0	0	0	.0	0	0	.0	.0	0	0		
Cefotaxime	87	3.	10	100	0.	0.	100	0.	0.	100	0.	0.	100	0.	0.	100	0.	0.		
	.0	0	.0	.0	0	0	.0	0	0	.0	0	0	.0	0	0	.0	0	0		
Cefuroxime	58	10	32	77.	6.	17	88.	0.	12	75.	0.	25	20.	0.	80	83.	17	0.		
	.0	.0	.0	0	0	.0	0	0	.0	0	0	.0	0	0	.0	0	.0	0		
Ceftriaxone	70	7.	23	65.	10	25	82.	0.	18	79.	14	7.	91.	0.	9.	82.	0.	18		
	.0	0	.0	0	.0	.0	0	0	.0	0	.0	0	0	0	0	0	0	.0		
Ciprofloxacin	44	10	46	33.	10	57	27.	27	46	62.	8.	30	38.	8.	54	25.	0.	75		
	.0	.0	.0	0	.0	.0	0	.0	.0	0	0	.0	0	0	.0	0	0	.0		
Doxycycline	49	13	38	45.	7.	48	40.	20	40	43.	57	0.	80.	0.	20	56.	11	33		
	.0	.0	.0	0	0	.0	0	.0	.0	0	.0	0	0	0	.0	0	.0	.0		
Gentamicin	26	2.	72	23.	3.	74	62.	15	23	33.	8.	59	41.	8.	51	44.	0.	56		
	.0	0	.0	0	0	.0	0	.0	.0	0	0	.0	0	0	.0	0	0	.0		
Imipenem	7.	8.	85	19.	11	70	27.	0.	73	31.	8.	61	10.	10	80	28.	0.	72		
	0	0	.0	0	.0	.0	0	0	.0	0	0	.0	0	.0	.0	0	0	.0		
Levofloxacin	39	11	50	27.	3.	70	28.	22	50	33.	22	45	33.	0.	67	20.	0.	80		
	.0	.0	.0	0	0	.0	0	.0	.0	0	.0	.0	0	0	.0	0	0	.0		
Meropenem	11	0.	89	7.0	6.	87	36.	0.	64	17.	0.	83	25.	0.	75	40.	0.	60		
	.0	0	.0		0	.0	0	0	.0	0	0	.0	0	0	.0	0	0	.0		

Nitrofurantoin	28	9.	63	47.	12	41	22.	11	67	88.	0.	12	92.	0.	8.	60.	10	30
	.0	0	.0	0	.0	.0	0	.0	.0	0	0	.0	0	0	0	0	.0	.0
Norfloxacin	44	4.	52	27.	5.	68	44.	19	37	39.	0.	61	42.	0.	58	44.	0.	56
	.0	0	.0	0	0	.0	0	.0	.0	0	0	.0	0	0	.0	0	0	.0
Ofloxacin	47	6.	47	29.	0.	71	50.	17	33	42.	8.	50	25.	0.	75	50.	0.	50
	.0	0	.0	0	0	.0	0	.0	.0	0	0	.0	0	0	.0	0	0	.0
Tobramycin	23	9.	68	23.	23	54	100	0.	0.	43.	29	28	40.	0.	60	43.	14	43
,	.0	0	.0	0	.0	.0	.0	0	0	0	.0	.0	0	0	.0	0	.0	.0
Piperacillin/Taz	34	2.	64	22.	0.	78	22.	0.	78	100	0.	0.	75.	0.	25	50.	0.	50
obactam	.0	0	.0	0	0	.0	0	0	.0	.0	0	0	0	0	.0	0	0	.0
Co-trimoxazole	74	4.	22	83.	0.	17	75.	6.	19	91.	0.	9.	89.	11	0.	75.	0.	25
	.0	0	.0	0	0	.0	0	0	.0	0	0	0	0	.0	0	0	0	.0
Vancomycin	N	N	N	NT	N	N	50.	0.	50	NT	N	N	NT	N	N	NT	N	N
•	T	T	T		T	T	0	0	.0		T	T		T	T		T	T

*Abbreviations: R – Resistant; I – Intermediate; S – Sensitive; NT – Not Tested

DISCUSSION

Bacterial urinary tract infections (UTIs) are among the most common reasons for patients to seek medical attention in the community. Successful management depends on identifying the specific pathogens responsible and prescribing appropriate antibiotics based on their susceptibility. Awareness of the local bacterial prevalence and their resistance trends is essential to guide empirical treatment effectively. However, since both the frequency and resistance patterns of these organisms vary between regions, hospitals, and communities, local data becomes critical in optimizing treatment strategies. The increasing prevalence of antimicrobial resistance has become a major public health issue, and urgent measures are required to curb its spread. [21,22]

Several strategies have been proposed, among which antibiotic surveillance programs are recognized as one of the top ten approaches for controlling resistance. [23] In India, national and institutional-level antibiotic surveillance initiatives are being promoted under ICMR to monitor antimicrobial resistance trends and strengthen antibiotic stewardship efforts. [24,25]

With the growing inconsistency in antibiotic susceptibility results across studies, it is now imperative for clinicians to rely on local culture data for formulating targeted antibiotic regimens. This approach is essential to minimize the threat posed by antibiotic resistance and emphasizes the importance of local surveillance in guiding empirical antibiotic therapy. The present study aimed to identify the common bacterial agents causing UTIs and to assess their current antibiotic resistance patterns among patients attending our tertiary care centre in India.

The findings of our study revealed that Escherichia coli was the most predominant pathogen responsible for UTIs, accounting for 58.7% of cases. Gramnegative bacteria constituted about 85% of all isolates, which is consistent with previously published literature showing E. coli as the leading uropathogen across both genders.^[28–31]

In the present research, E. coli and Proteus species emerged as the predominant isolates. While E. coli remains the principal causative organism of UTIs as reported in most studies, our results identified Proteus spp. as the second most frequent pathogen,

which slightly differs from previous reports. For instance, studies from Turkey have noted Klebsiella spp. as the second most common isolate. [32,33] Similarly, Kidwai et al. found S. aureus and Klebsiella spp. to be the next most frequent organisms after E. coli among Pakistani patients. [34] A retrospective study by Agca and Toklu also reported Pseudomonas aeruginosa (6%),Enterococcus spp. (5%), Klebsiella spp. (5%), and Staphylococcus aureus (4%) as major isolates after E. coli.[35] These variations emphasize the need to consider local epidemiological factors, patient profiles, and antimicrobial usage patterns when studying UTI etiology and designing empirical treatment protocols.

Regarding the distribution of bacterial isolates across age groups, the 13–65 years age group showed the highest susceptibility to UTIs (41.3%), followed by 0–13 years (35.3%) and >65 years (23.4%). This increased prevalence in adults may be attributed to greater sexual activity, pregnancies, and the use of certain contraceptives such as diaphragms or spermicides, all of which can increase UTI risk. [36] E. coli remained the most common pathogen across all age groups, while other organisms varied slightly in distribution, suggesting possible age-related differences in bacterial colonization and host susceptibility.

In our study, the overall percentage of isolates showed a nearly equal distribution between inpatients (48.3%) and outpatients (51.7%). Unlike some previous studies that reported a higher prevalence among hospitalized patients, [37,38] we observed comparable rates in both groups. This variation could be due to differences in patient demographics and healthcare practices. Nevertheless, Gram-negative organisms were more frequent among inpatients, be explained which may by prolonged hospitalization, use of invasive devices, prior antibiotic exposure, and immunocompromised status. Antimicrobial resistance remains a major challenge in effectively managing infections caused by uropathogens and continues to rise over time. The antibiotic susceptibility analysis in our study provides a clear overview of resistance trends. E. coli showed high resistance to Cefotaxime (87.5%) but retained good sensitivity to Meropenem (89%). It demonstrated notable resistance

moderately sensitive to Piperacillin/Tazobactam. Resistance to Ampicillin among E. coli isolates is commonly mediated by plasmid-borne TEM-1 βlactamase [39]. Since Sulbactam is a weaker inhibitor of TEM-1 than Tazobactam, Ampicillin/Sulbactam is less effective compared Piperacillin/Tazobactam, which shows better inhibition and a broader activity spectrum.^[40-42] Proteus spp. showed complete resistance to Cefotaxime but high sensitivity to Meropenem (86.7%). Staphylococcus spp. were completely resistant to Cefotaxime and Tobramycin, while Piperacillin/Tazobactam was the most effective (77.8%).Both Klebsiella antibiotic Pseudomonas spp. displayed widespread resistance to multiple antibiotic groups, confirming the increasing challenge in treating these infections. Carbapenems remain the most effective agents against Klebsiella and Pseudomonas infections, consistent with findings from other studies. [43,44] Enterobacter spp. also exhibited multidrug resistance but showed marked sensitivity to Amikacin (91.7%). the isolated uropathogens showed Overall.

significant resistance to Ampicillin/Sulbactam,

Cefotaxime, Ceftriaxone, and Co-trimoxazole. This

high level of resistance may result from widespread

antibiotic misuse and self-medication in the

community.^[39] In contrast, minimal resistance was

Gentamicin, and Levofloxacin. The relatively low

resistance to these antibiotics could be attributed to

their higher cost and restricted availability, limiting

Meropenem,

Imipenem,

against

observed

but remained

Ampicillin/Sulbactam (73.8%)

their empirical use.

These findings highlight substantial variation in susceptibility patterns among uropathogens and stress the need for rational, targeted antibiotic therapy guided by culture and sensitivity testing. Tailoring antibiotic use based on local resistance trends is essential for improving patient outcomes and preventing further escalation of antimicrobial resistance.

CONCLUSION

This study highlights that E. coli remains the predominant cause of UTIs in the Indian population, followed by Proteus, Staphylococcus, and Klebsiella species. A worrisome level of resistance was observed to commonly prescribed antibiotics, Ampicillin, third-generation including cephalosporins, and Co-trimoxazole. In contrast, high sensitivity to Meropenem, Imipenem, and Amikacin indicates that these agents remain effective therapeutic options for multidrug-resistant isolates. The findings underscore the necessity for continuous regional surveillance of antimicrobial resistance of patterns and implementation antibiotic stewardship policies at both community and hospital levels. Judicious antibiotic use, patient education, and strict infection-control measures are crucial to preserving the efficacy of existing drugs. Further molecular studies are recommended to characterize resistance genes and support the development of targeted therapeutic strategies.

REFERENCES

- Shawagfeh M'T, Mansour GH, Al-Shawabkeh JD, Odeh WH. Antibiotic resistance profile of Escherichia coli among urological adult patients in public hospital of Thaiban at Madaba Governorate/Jordan. Braz J Biol. 2025 May 12;85:e290126.
- Gandham P, Arumugam K. Antimicrobial resistance patterns of Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections: a prospective study from a tertiary care hospital in Hyderabad.Int J Res Med Sci 2025;13:3715-9.
- Al-Daoud F, Mushtaq GH. Exploring bacterial profiles and antibiotic susceptibility patterns in urinary tract infection cases at Idlib university hospital, Syria. Indian J Microbiol Res 2024;11(2):63-70
- Derakhshan S, Ahmadi S, Ahmadi E, Nasseri S, Aghaei A. Characterization of Escherichia coli isolated from urinary tract infection and association between virulence expression and antimicrobial susceptibility. BMC Microbiol. 2022 Apr 6:22(1):89.
- Sabir S, Anjum AA, Ijaz T, Ali MA, Khan MR, Nawaz M. Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital. Pak J Med Sci 2014;30(2):389-392
- Pirouzi A, Foruozandeh H, Farahani A, Shamseddin J, Mohseni H, et al. Investigation of Antimicrobial Resistance Pattern Among Escherichia coli Strains Isolated from Patients Referred to Amir Al-Momenin Hospital, Gerash, Iran.Gene Cell Tissue.2019;7(1):e97554.
- Bhargava K, Nath G, Bhargava A, Kumari R, Aseri GK and Jain N (2022) Bacterial profile and antibiotic susceptibility pattern of uropathogens causing urinary tract infection in the eastern part of Northern India. Front. Microbiol. 13:965053.
- 8. KumarÅ, KumarR, GariM, KeshriUP, MahatoSK, KumariR. Antimicrobial susceptibility pattern of urine culture isolates in a tertiary care hospital of Jharkhand, India.Int JBasic Clin Pharmacol 2017;6:1733-9.
- Jones RN, Inabo HI. Antimicrobial susceptibility of some urinary tract clinical isolates to commonly used antibiotics. Afr J Biotechnol. 2006;5:487–9.
- Sweih NA, Jamal W, Rotimi VO. Spectrum and antibiotic resistance of uropathogens isolated from hospital and community patients with urinary tract infections in two large hospitals in Kuwait. Med Princ Pract. 2005;14(6):401–7.
- Kolawale AS, Kolawale OM, Kandaki-Olukemi YT, Babatunde SK, Durowade KA. Prevalence of urinary tract infections (UTI) among patients attending Dalhatu Araf Specialist Hospital, Lafia, Nasarawa State, Nigeria. Int J Med Med Sci. 2009;1(5):163–7.
- Sobel JD, Kaye D. Urinary Tract Infections. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier; 2015. p. 886–913.
- Hvidberg H, Struve C, Krogfelt KA, Christensen N, Rasmussen SN, Frimodt-Møller N. Development of a Long-Term Ascending Urinary Tract Infection Mouse Model for Antibiotic Treatment Studies. Antimicrob Agents Chemother. 2000;44(1):156–63.
- Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, et al. Clinical Practice Guidelines for the Antibiotic Treatment of CommunityAcquired Urinary Tract Infections. Infect Chemother. 2018;50(1):67–100.
- Onanuga A, Awhowho G. Antimicrobial resistance of Staphylococcus aureus strains from patients with urinary tract infections in Yenagoa, Nigeria. J Pharm Bioallied Sci. 2012;4(3):226–30.
- Alsohaim SIA, Bawadikji AA, Elkalmi R, Mahmud M, Hassali MA. Relationship between antimicrobial prescribing and antimicrobial resistance among UTI patients at Buraidah

- Central Hospital, Saudi Arabia. J Pharm Bioallied Sci. 2019;11(2):162–9.
- Alzahrani M, Ali M, Anwar S. Bacteria Causing Urinary Tract Infections and Its Antibiotic Susceptibility Pattern at Tertiary Hospital in Al-Baha Region, Saudi Arabia: A Retrospective Study. J Pharm Bioallied Sci. 2020;12(4):449–56.
- Abejew AA, Denboba AA, Mekonnen AG. Prevalence and antibiotic resistance pattern of urinary tract bacterial infections in Dessie area. BMC Res Notes. 2014;7(1):687.
- Cappuccino J, Welsh C. Microbiology: A Laboratory Manual. 12th ed. New Jersey: Pearsons; 2019.
- Performance Standards for Antimicrobial Susceptibility
 Testing. CLSI Supplement M100, 31st Edition. USA: Clinical
 and Laboratory Standards Institutue (CLSI); 2021. Available
 from: https://www.treata. academy/wpcontent/uploads/2021/03/CLSI-31-2021.pdf.
- Parsonage B, Hagglund PK, Keogh L, Wheelhouse N, Brown RE, Dancer SJ. Control of Antimicrobial Resistance Requires an Ethical Approach. Front Microbiol. 2017;8:2124.
- 22. Zhanel GG, Karlowsky JA, Harding GK, Carrie A, Mazzulli T, Low DE. A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim sulfamethoxazole, ampicillin, mecillinam, nitrofurantoin, and ciprofloxacin. The Canadian Urinary Isolate Study Group. Antimicrob Agents Chemother. 2000;44(4):1089–92.
- Zowawi HM. Antimicrobial resistance in Saudi Arabia. Saudi Med J. 2016;37(9):935–40.
- Faidah HS, Ashshi AM, El-Ella GAA, Al-Ghamdi AK, Mohamed AM. Urinary Tract Infections among Pregnant Women in Makkah, Saudi Arabia. Biomed Pharmacol J. 2013;30(1):1–7.
- Alanazi MQ, Alqahtani FY, Aleanizy FS. An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: retrospective study. Ann Clin Microbiol Antimicrob. 2009;17(1):3.
- Rizvi ZA, Jamal AM, Malik AH, Zaidi SMJ, Rahim NUA, Arshad D. Exploring Antimicrobial Resistance in Agents Causing Urinary Tract Infections at a Tertiary Care Hospital in a Developing Country. Cureus. 2020;12(8):e9735.
- Tessema B, Kassu A, Mulu A, Yismaw G. Pridominant isolates of urinary tract pathogens and their antimicrobial susceptibility patterns in Gondar University Teaching Hospital, nothwest Ethiopia. Ethiop Med J. 2007;45(1):61-7.
- Raka L, Mulliqi-Osmani G, Berisha L, Begolli L, Omeragiq S, Parsons L, et al. Etiology and susceptibility of urinary tract isolates in Kosova. Int J Antimicrob Agents. 2004;23:2–5.
- Farajnia S, Alikhani MY, Ghotaslou R, Naghili B, Nakhlband A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int J Infect Dis. 2009;13(2):140-4.
- Dromigny JA, Nabeth P, Claude J. Distribution and susceptibility of bacterial urinary tract infections in Dakar, Senegal. Int J Antimicrob Agents. 2002;20(5):339–47.

- Uslu M, Bagcio glu M, Tekdo gan Ü, Kocaaslan R, Çeçen K. Epidemology and Antibiotic Resistance of Urinary Tract Infection in the Kars Region. Kafkas J Med Sci. 2019;9(2):90–6.
- Ünsal H, Kaman A, Tanır G. Relationship between urinalysis findings and responsible pathogens in children with urinary tract infections. J Pediatr Urol. 2019;15(6):606–7.
- Kidwai SS, Nageen A, Ghaznavi S, Basheer F, Ara J. Antibiotic susceptibility in commonly isolated pathogens from urinary tract infection in a cohort of subjects from low socioeconomic strata. Pak J Med Sci. 2017;33(2):254–9.
- Agca H, Toklu GD. Bacteria Isolated from Urine Samples and Their Antimicrobial Susceptibilities. J Clin Anal Med. 2013;4:30–3.
- 35. Najar M, Saldanha C, Banday K. Approach to urinary tract infections. Indian J Nephrol. 2009;19(4):129.
- Kengne M, Dounia AT, Nwobegahay JM. Bacteriological profile and antimicrobial susceptibility patterns of urine culture isolates from patients in Ndjamena, Chad. Pan Afr Med J. 2017;28:258.
- Girma A, Aemiro A. The Bacterial Profile and Antimicrobial Susceptibility Patterns of Urinary Tract Infection Patients at Pawe General Hospital, Northwest Ethiopia. Scientifica (Cairo). 2022;2022:3085950.
- 38. Seifu WD, Gebissa AD. Prevalence and antibiotic susceptibility of Uropathogens from cases of urinary tract infections (UTI) in Shashemene referral hospital. BMC Infect Dis. 2018;18(1):30.
- Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–84.
- Jones RN, Pfaller MA, Doern GV, Erwin ME, Hollis RJ. Antimicrobial Activity and Spectrum Investigation of Eight BroadSpectrum β-Lactam Drugs: A 1997 Surveillance Trial in 102 Medical Centers in the United States. Diagn Microbiol Infect Dis. 1998;30(3):215–28.
- Reguera JA, Baquero F, Pérez-Díaz JC, Martínez JL. Factors determining resistance to β-lactam combined with βlactamase inhibitors in Escherichia coli. J Antimicrob Chemother. 1991;27(5):569–75.
- Vanjak D, Muller-Serieys C, Picard B, Bergogne-Berezin E, LambertZechovsky N. Activity of beta-lactamase inhibitor combinations on Escherichia coli isolates exhibiting various patterns of resistance to beta-lactam agents. Eur J Clin Microbiol Infect Dis. 1995;14(11):972–8.
- Ding Y, Wang H, Pu S, Huang S, Niu S. Resistance Trends of Klebsiella pneumoniae Causing Urinary Tract Infections in Chongqing. Infect Drug Resist. 2011;14:475–81.
- 44. Shah DA, Wasim S, Abdullah FE. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from urine samples of Urinary Tract Infections patients in Karachi, Pakistan. Pak J Med Sci. 2015;31(2):341–5.